Experiments on Compressing Boolean Inverted Files
by Document Ordering

Alexander Gelbukh !, Sang Yong Han ?, Grigori Sidorov !

! Computing Research Center, National Polytechnic Institute,
Av, Juan Dios Batiz, Zacatenco, 07738, DF, Mexico
{gelbukh, sidorov) @cic.ipn.mx; www.gelbukh.com

? Department of Computer Science and Engineering, Chung-Ang University,
221 Huksuk-Dong, DongJak-Ku, Scoul, 156-756, Korea
hansy@cau.ac.kr

ABSTRACT

Boolean queries are used to search a document col-
lection for the documents that contain specific terms,
independently of the frequency of a term in the
document. To perform such queries, a search engine
maintains an inverted file, which lists for each key-
word the documents containing it. The size of such a
file is comparable with that of the document collec-
tion, which is a considerable storage overhead. The
inverted file can be compressed by reordering the
documents in the collection in a specific way. We
investigate the scalability of the efficiency of such
compression with respect to the size of the collec-
tion and stemming settings.

Keywords: Information Boolean

Search, Inverted File Size

Retrieval,

1. INTRODUCTION

Information retrieval can be defined as the task of
finding in a large natural language document collec-
tion those that satisfy some information need ox-
pressed by the user. The most common way of ex-
pressing such information need is a query consisting
of a set of keywords. E.g., for the query flu treat-
ment, the documents about flu treatment are selected
from the collection at hand and presented to the user.

There are two major technical approaches to the
task: the vector space model and the Boolean model
[1]- In the vector space model, quantitative charac-
tenstics of the documents (such as the number of
occurrences of the given term) and the keywords
(such as the number of documents containing the
given keyword) are taken into account to calculate
the relevance of a retrieved document to the query,
so that the user is first presented the most relevant
documents. The greater the number of occurrences
of the given keywords in a document the higher its
relevance. This is especially uscful when there are
very many documents that contain the search temm,

which is usually the case with very large document
collections such as Internet. However, the need to
calculate and store this quantitative information
produces a significant overhcad on the retrieval sys-
tem.

In the case of Boolean model, all documents that
contain the given keywords are retrieved. The rele-
vance of individual documents cannot be judged
directly, since no frequency information is main-
tained.

Such a scarch strategy is adequate for relatively
small specialized document collections, when the
number of documents retrieved for a query is not
very high. It is especially suitable for collections of
small documents such as news headers, medical re-
cords, or abstracts, Such documents usually do not
contain many occurrences of any word, so that the
vector space model does not perform well on them
and, in fact, is in effect reduced to the Boolean
model (since most documents have at most one oc-
currence of any given keyword).

The advantages of the Boolean approach include:

Simple implementation,

Fast processing,

Reduced storage overhead,

Applicability of compression techniques (as the
one described in this paper),

¢ Clear semantics,

* Logical expressions in the query.

L] L] L] L]

The latter point refers to the possibility to specify
queries with Boolean expressions, such as *flu AND
(treatment OR medicine) AND NOT aspirin™. Again,
though this is not very relevant for general-purpose
collections such as Internet, such qucries are very
useful for professionals working with specialized
collections such as medical records.

The main disadvantage of the Boolean model is
the lack of support for ordering the retrieved docu-
ments by relevance. However, under our assump-
tions (few documents retricved for a query, lack of

J. Diaz de Leén, G. Gonzalez, J. Figueroa (Eds.): Avances en Clenclas de la Computacién, pp. 131-135, 2003.
© IPN, México 2003.

131

132 A. Gelbukh, San Yong Han and G. Sidorov

statistical information in individual documents) the
relevance can be judged by an independent module:
first all docu.ments satisfying the query are retricved,
and then their full texts are analyzed on the fly using
statistical, linguistic, or other methods.

Hence Boolean model remains a popular search
strategy suitable for many document collections.

Since such collections are likely to be distributed
on CD-ROM or another media with restricted ca-
pacity, considerable effort has been devoted to re-
ducing the storage overhead. One of popular meth-
ods applicable to the Boolean model (but not to the
vector model) is blocking [1].

In this paper we present a method of compression
of the internal structure used in Boolean search en-
gines. Our method gives better results when the
documents in the collection are unordered, so that
we can choose a specific order of the documents.
However, the method can be applied without this
restriction. In the experiments we obtained about 7%
of reduction in size as compared to the baselinc.

The paper is organized as follows. Section 2 de-
scribes our impruvement to the data structure repre-
senting the inverted file. Section 3 formalizes the
problem of its compression. Section 4 explains the
algorithm used for compression. Finally, Section 5
presents the experimental results and Section 6
draws the conclusions.

2. THE DATA STRUCTURE

In this paper we assume that all documents of the
collection are available beforehand. Thus, our struc-
tures are optimized for storing and retricval, but not
for dynamically adding new documents.

To facilitate Boolean queries, the system uses an
inverted file. It represents a T x D Boolean matrix
A=|ay|, where T is the number of all different oc-
curring in the documents of the collection (possibly
except stop-words), D is the number of documents
in the collection, and

a = 1 if j-th document contains i - th term,
Y710 otherwise.)

This very sparse matrix is stored in a format opti-
mized for fast retrieval of the set of all documents
containing a given term /.

Usually the matrix is stored as an array of the
document numbers ordered by the terms, €.g.,

12, 17, 18, 19, 23, 24, 35

03, 07, 08, 12
01, 17, 78 (2)

which means that, say, second term occurs in the
documents number 3, 7, 8, and 12.

Note that the numbers of the documents are or-
dered in each line, which facilitates Boolean logic

operations in case of a que
expression. To calculat::l anr{::g;l:lcd -
the sequences corresponding to ¢, ang Say , ngiq
merged. The complexity of this operyy; h are g h,
the total length of these two sequences '

However, such a data structure >
parable to that of the whole d(,‘;u“u:u"e siu%
especially in the case of small d°°umn? t °°|1qu°n’
terms are repeated in one documen;. [an W few
case the inverted file contains an <:Ie:m¢dec in g
cach occurrence of any word in any doc:l

In this paper we consider a possjble wrn
the size of such an inverted file. % o regy

Our idea is to represent contiguoys
through the initial number and the numbe Mieryy,
tional documents in the interval. Wiy lh_f of ady;,
(2) will be represented as ' the gy

12, 1742, 23+1, 35

03, 07+1, 12

01, 17, 78

Sim
P
hlka‘z

which means that, say, the second term .
documents 3, 7, one more (i.c., 8), and 12,

At the first glance, this representation s
teed to be more compact than (2). However aq4
tional structure has its price. Indeed, in), th; 3 b
bers can be allocated in fixed-length celis. Say
there are slightly less than 1000 documents m
number can occupy 10 bits. Note that under lhc
sumption that the sizes of the documents are o
parable, there is no point in variable-length celis
store the numbers of the documents.

In case of representation (3), additional cost
paid for maintaining such a more complex structure.
Specifically, fixed-length storage is no longer possi-
ble (not to store zeroes for the majority of items
do not represent non-trivial intervals); only nonzero
interval lengths are stored explicitly.

3. THE PROBLEM

As we have seen, though joining contiguous runs
document numbers into one interval results in
items, each item now requires more bits to
Thus, whether the representation (3) results
compact than (2) depends on the number of
tiguous runs in the rows of the matrix.

Reordering of the columns of the matrix
change the total number of contiguous runs.
means that reordering of the documents in the
lection can result in more compact representation
(3).

This does not imply any additional cost
logical order of documents in the collection does
matter, as is the case with many collections.
ever, if the order really matters, an additional
should be maintained to translate the document

Experiments on Compressing Boolean Inverted Files by Document Ordering

dering used for (1) into the ordcring in the actual
collection.

In (2] we have shown that, though without
re-ordering of the matrix the representation (3)
proves to be worse than (2), it is possible to find
such an order with which (3) results to be more
compact, even taking into account the possible addi-
tional space needed for the translation array.

In this paper, we investigate the effect of the size
of the document collection and stemming on the ef-
fectiveness of such compression.

4. THE ALGORITHM

In [2), two algorithms were suggested to find the
near-optimal ordering.

Traveling Salesman Problem algorithm. Let us
first consider a fixed-length storage scheme, so that
both non-trivial intervals and individual numbers
(we will call them trivial intervals) occupy the same
number of bits (say, 15 bits), i.e.,

1742, 2341, 3540

07+1, 1240
7840

1240,
03+0,
01+0, 1740,

“)
and find the optimal ordering of the documents in
this case. Our experiments show that this order re-
sults to be near-optimal for the real scheme (3).

Assume that no term occurs in all documents.
Consider also a minor improvement to our repre-
sentation. Namely, consider the documents to be
arranged in a circle instcad of a scquence. Then, if a
row of the matrix contains both last and first ele-
ments, they can be joined into an interval. This can
be easily represented in the format (4): say, if the
last interval in a row extends beyond the last column
of the matrix, it is interpreted as including the first
columns. E.g., if D = 78, the third row of (4) can
now be wntten as

1740, 78+1 (s)
Though in practice there is no point to implement
this detail (since it does not provide any significant
improvement), we need it to simplify our reasoning.

The problem of minimizing the total number of
items in the structure (4) with the improvement (5)
can be recast, similarly to [3), as a Ham-
ming-distance traveling salesman problem (TSP) 131
[5] over the complete graph Kp of documents
thought of as sets of words. This problem can be
formulated as follows. Consider the D x D matrix
L =|ly| of distances,

1, =|d, vd, \d,nd,) ©)

i.c., the number of words in which the documents
and s differ. The problem 1s to find a path, i.c., an or-
dering a(i): {1, ..., D} « (I, ..., D}, such that the
total length between its adjacent nodes be minimal:

D l .
Zm atixepen —¥ MIN.

where a(D + 1) = of1).

Indeed, consider an ordering of the columns of the
matrix. A word absent in a document but present in
the next one corresponds to the beginning of a (triv-
ial or non-trivial) interval in the corresponding row
of the matrix; a word present in a document but ab-
sent in the next one corresponds to the end of such
interval. Since the total number of beginnings and
ends of the intervals is the same, the formula (7) ex-
presses the double total number of items in (4).

TSP is a well investigated problem [3]; in par-
ticular, Hamming-distance TSP has been applied, for
example, in molecular biology [5]. TSP is an
NP-hard problem (i.c., NP-complete or harder),
which means that no affordable exact algorithm to
find its exact solution is known. However, many
heuristics algorithms have been developed that give
ncar-optimal solutions. [n our experiments we tried,
among others, the cheapest insertion algorithm:

1. Choose an arbitrary element dj.
2. Choose an element d closest to dy and form a
round-trip path consisting of these two elements.

3. Repeat until all elements are inserted in the path:

4. Choose an element d. not in the already con-
structed path and two adjacent elements d,
and dk, on the path such that the cost C of in-
sertion of d. between d, and ¢, be minimal.

5. Insert d. between d, and d, in the path.

The cost of insertion here is

(M

C=l, 4+l a=lsa- (8)

A trivial direct implementation of this algorithm
has the complexity D’. However, it can be imple-
mented with complexity D?log D; we will not deep
into details here. Since the calculation of the Ham-
ming distance matrix is, to the best of our knowl-
edge, DS, where S is the average number of words
in a document, we conclude, given § > log D, that
the total complexity of our algorithm is D’S.

Another possible class of algorithms for solving
this problem is genetic algorithms.

Modified algorithm. In the previous section we
assumed that the storage space does not depend on
the interval length; in particular, that the space oc-
cupied by trivial and non-trivial intervals is the same,
as in (4). Now let us return to the variable-length
representation (3).

133

A. Gelbukh, San Yong Han and G. Sidorov

Case Configuration Cost
l. Adding a new single number 010 N
. . . . 0110
2. Converting a single number into an interval 0110 M-N
1110
3. Extending an interval 0111 0
111
4. Breaking an interval into: two intervals 11011 M
)) 01011
5. an interval and asingle number ; ; 4 1 4 N
6. two single numbers 01010 2N_M\

Table 1. Cost of insertion of a document.

In this case the total cost of an ordering o in ques-
tion cannot be described by pair-wise distances /,, as
in (8). Fortunately, most techniques used to solve
TSP-like problems—among those the algorithm de-
scribed above, as well as genetic algorithms—do not
heavily rely on the exact form of the expression (8).
It is enough for C to depend on a limited number of
elements around the insertion point; the complexity
of the algorithm is not affected. Though the theo-
rems on worst-case behavior of the algonithm ap-
plied to TSP may not hold in this case, we expect
that the quality of the results is comparable to that of
the standard TSP case.

Let us construct a more precise expression for C.
Assume that trivial intervals occupy N bits and
non-trivial ones M bits (though our considerations
can be generalized to a variable-length representa-
tion of non-trivial intervals). When a document is
inserted into an existing path, for each row of the
structure (3) we should distinguish the cases de-
scribed in the left-hand column of Table | and add
the appropriate cost specified in the right-hand col-
umn of the table.

For example, let us insert a document containing
only the 2™ and 3" words into the collection (3)
between 17® and 18% documents (and renumber the
rest of the documents so that the 18* becomes 19*,
etc.). The new collection is represented as follows:

12, 17, 19+1, 24+1, 36

03, 07+1, 18, 12
01, 17+1, 79 %)

Indecd, the new document broke an interval in the
first line (case S in Table 1), added a single number
in the second line (case 1) and converted a single
number into an interval in the third line (case 2).
Thus, the total insertion cost is
C=N+N+(M-N)=2N+M.

For each word—a row of (3)—the cases can be
distinguished by the configurations shown in Table 1.
Here, | stands for presence of the word in the docu-
ment and O for absence. The figure in bold stands for
the document being inserted; the others stand for the
left and right neighbors of the insertion point,
accordingly. As we see, it is enough to consider at
most two documents to the left and two to the right

the right of the insertion point. Note that the

only 1 and 2 clements in the already mmc‘“‘s of
path (where there are less than two neighbom"u““
insertion point) are handled separately (we Om.of the
the details). here

5. EXPERIMENTAL RESULTS

For our experiments we used the abstracts

from the Cystic Fibrosis standard documen coll
tion as available from [6]. The collection COma?-
D =785 abstracts, of the total size of 700 KB, rr.-
ing from 0.1 to 3.3 KB, with average size of 0.9 KB-
As we have mentioned in Section 1, Boolean search
model is adequate for such short documents.

We indexed all alphanumenic sequences in e
documents, which amounted to a total of 680 Kp
and converted all letters to uppercase. Afier remov:
ing the following most frequent stop-words: of, rhe
in, and, with, 1o, a, was, were, for, is, from, that, by.
be, this, or, as, these, an, not, on, are, than, have, i
at, had, it, may, 1, been, which, between, one, bur,'
two, 2, has, both, more, all, other, there, S, 3, their
also, 0, those, only, after, 4, when, three, who, lh;
collection reduced to 530 KB. No stemming was
applied.

This gave T=7856 unique words for the whole
collection. The resulting inverted file (2) contained
47314 clements. Then we compressed the inverted
file to the representation (3), reorderning the docu-
ments using different algorithms.

We have experimented with sub-collections of
different sizes to estimate the scalability of the
method.

Also, we experimented with original files as well
as with stemmed words, i.c., the words like govern-
ment, governor, governmental, etc. collated to the
same slem govern- and thus occupying only on¢ line
in the inverted file matrix. We used the standard
Porter stemmer.

Since our experiments are still in progress, the actual
experimental results will be given in detail in the final
version of this paper, though we do not give them in
this Extended Abstract. What we can say already fof
sure is that the experiments show that the method 1

Experiments on Compressing Boolean Inverted Files by Document Ordering

robust both with respect to the size of the collection
and with respect to stemming.

6. CONCLUSIONS

In [2) we have reported an algorithm for compress-
ing the Boolean matrix representing the inverted file
of a Boolcan search engine for a static collection.
The matrix can be compressed up to 8% by the
combination of two factors: (1) a storage format that
represents the contiguous runs of 1s in the matrix as
one unit and (2) a specific ordering of the columns
(i.¢., of the documents in the collection), if needed
without loss of information about the original order.

In this paper we have experimentally shown that
the method is robust with respect to both the size of
the collection and stemming.

References

[1] R. Bacza-Yates, B. Ribeiro-Neto: Modem Infor-
mation Retrieval. ACM Press/Addison-Wesley
1999.

(2] A. Gelbukh, S.Y. Han, G. Sidorov. Compres-
sion of Boolean Inverted Files by Document Or-
dering [EEE NLPKE-2003, to appear.

(3] G. Cohen, S Litsyn and G. Zémor, On the travel-
ing salesman problem in binary Hamming spaces,
IEEE Trans. Info. Theory, vol. 42, 1996, pp.
1274-1276, cite-
seer.nj.nec.com/cohen96traveling. html.

[4] DJ. Rosenkrantz, R E. Stearns, and PM. Lewis II.
An analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing,
6(3):563-581, 1977.

[5] Alizadeh, F, Karp, K., Newberg, L., and Weisser,D.
(1993). Physical mapping of chromosomes: A
combinatorial problem in molecular biology. In
Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), 371-381. ACM
Press

[6] Cystic Fibrosis text collection, c¢se.hanyang.ac kr/
~jmchov/class-0ld/2001-1/ir/homeworks html.

135

